Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.984
1.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727304

We have described the influence of selected factors that increase the toxicity of nanoplastics (NPs) and microplastics (MPs) with regard to cell viability, various types of cell death, reactive oxygen species (ROS) induction, and genotoxicity. These factors include plastic particle size (NPs/MPs), zeta potential, exposure time, concentration, functionalization, and the influence of environmental factors and cell type. Studies have unequivocally shown that smaller plastic particles are more cytotoxic, penetrate cells more easily, increase ROS formation, and induce oxidative damage to proteins, lipids, and DNA. The toxic effects also increase with concentration and incubation time. NPs with positive zeta potential are also more toxic than those with a negative zeta potential because the cells are negatively charged, inducing stronger interactions. The deleterious effects of NPs and MPs are increased by functionalization with anionic or carboxyl groups, due to greater interaction with cell membrane components. Cationic NPs/MPs are particularly toxic due to their greater cellular uptake and/or their effects on cells and lysosomal membranes. The effects of polystyrene (PS) vary from one cell type to another, and normal cells are more sensitive to NPs than cancerous ones. The toxicity of NPs/MPs can be enhanced by environmental factors, including UV radiation, as they cause the particles to shrink and change their shape, which is a particularly important consideration when working with environmentally-changed NPs/MPs. In summary, the cytotoxicity, oxidative properties, and genotoxicity of plastic particles depends on their concentration, duration of action, and cell type. Also, NPs/MPs with a smaller diameter and positive zeta potential, and those exposed to UV and functionalized with amino groups, demonstrate higher toxicity than larger, non-functionalized and environmentally-unchanged particles with a negative zeta potential.


Cell Death , DNA Damage , Microplastics , Nanoparticles , Oxidative Stress , Oxidative Stress/drug effects , Microplastics/toxicity , Humans , Nanoparticles/toxicity , Nanoparticles/chemistry , Cell Death/drug effects , Reactive Oxygen Species/metabolism , Animals , Particle Size
2.
J Zhejiang Univ Sci B ; 25(5): 361-388, 2024 May 15.
Article En, Zh | MEDLINE | ID: mdl-38725338

Ceria nanoparticles (CeO2 NPs) have become popular materials in biomedical and industrial fields due to their potential applications in anti-oxidation, cancer therapy, photocatalytic degradation of pollutants, sensors, etc. Many methods, including gas phase, solid phase, liquid phase, and the newly proposed green synthesis method, have been reported for the synthesis of CeO2 NPs. Due to the wide application of CeO2 NPs, concerns about their adverse impacts on human health have been raised. This review covers recent studies on the biomedical applications of CeO2 NPs, including their use in the treatment of various diseases (e.|g., Alzheimer's disease, ischemic stroke, retinal damage, chronic inflammation, and cancer). CeO2 NP toxicity is discussed in terms of the different systems of the human body (e.|g., cytotoxicity, genotoxicity, respiratory toxicity, neurotoxicity, and hepatotoxicity). This comprehensive review covers both fundamental discoveries and exploratory progress in CeO2 NP research that may lead to practical developments in the future.


Cerium , Cerium/chemistry , Cerium/toxicity , Humans , Animals , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Neoplasms/drug therapy , Alzheimer Disease , Nanoparticles/toxicity
3.
J Neurosci Res ; 102(5): e25340, 2024 May.
Article En | MEDLINE | ID: mdl-38745527

The ubiquity of nanoparticles, sourced from both natural environments and human activities, presents critical challenges for public health. While offering significant potential for innovative biomedical applications-especially in enhancing drug transport across the blood-brain barrier-these particles also introduce possible hazards due to inadvertent exposure. This concise review explores the paradoxical nature of nanoparticles, emphasizing their promising applications in healthcare juxtaposed with their potential neurotoxic consequences. Through a detailed examination, we delineate the pathways through which nanoparticles can reach the brain and the subsequent health implications. There is growing evidence of a disturbing association between nanoparticle exposure and the onset of neurodegenerative conditions, highlighting the imperative for comprehensive research and strategic interventions. Gaining a deep understanding of these mechanisms and enacting protective policies are crucial steps toward reducing the health threats of nanoparticles, thereby maximizing their therapeutic advantages.


Nanoparticles , Neurodegenerative Diseases , Humans , Nanoparticles/toxicity , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain/drug effects , Brain/metabolism , Environmental Exposure/adverse effects
4.
J Hazard Mater ; 471: 134253, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38642497

Micro- and nanoplastics (MNPs) are ubiquitous in the environment, resulting in the uptake of MNPs by a variety of organisms, including humans, leading to particle-cell interaction. Human macrophages derived from THP-1 cell lines take up Polystyrene (PS), a widespread plastic. The question therefore arises whether primary human macrophages also take up PS micro- and nanobeads (MNBs) and how they react to this stimulation. Major aim of this study is to visualize this uptake and to validate the isolation of macrophages from peripheral blood mononuclear cells (PBMCs) to assess the impact of MNPs on human macrophages. Uptake of macrophages from THP-1 cell lines and PBMCs was examined by transmission electron microscopy (TEM), scanning electron microscopy and live cell imaging. In addition, the reaction of the macrophages was analyzed in terms of metabolic activity, cytotoxicity, production of reactive oxygen species (ROS) and macrophage polarization. This study is the first to visualize PS MNBs in primary human cells using TEM and live cell imaging. Metabolic activity was size- and concentration-dependent, necrosis and ROS were increased. The methods demonstrated in this study outline an approach to assess the influence of MNP exposure on human macrophages and help investigating the consequences of worldwide plastic pollution.


Macrophages , Microplastics , Polystyrenes , Reactive Oxygen Species , Humans , Macrophages/drug effects , Macrophages/metabolism , Reactive Oxygen Species/metabolism , Polystyrenes/chemistry , Polystyrenes/toxicity , THP-1 Cells , Microplastics/toxicity , Leukocytes, Mononuclear/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry , Cell Survival/drug effects , Microscopy, Electron, Transmission , Particle Size
6.
Plant Physiol Biochem ; 210: 108604, 2024 May.
Article En | MEDLINE | ID: mdl-38608505

The rapid advancement of nanotechnology has led to unprecedented innovations across diverse industries, including pharmaceuticals, agriculture, cosmetics, electronics, textiles, and food, owing to the unique properties of nanoparticles. The extensive production and unregulated release of synthetic nanoparticles may contribute to nanopollution within the ecosystem. In the agricultural sector, nanotechnology is increasingly utilized to improve plant productivity, enhance resistance to stressors, and reduce the usage of chemicals. However, the uncontrolled discharge of nanoparticles into the natural environment raises concerns regarding possible plant toxicological impacts. The review focuses on the translocation of these particles within the plants, emphasizing their phytotoxicological effects at morphological, physiological, biochemical, and molecular levels. Eventhough the beneficial aspects of these nanoparticles are evident, excessive usage of nanoparticles at higher concentrations may lead to potential adverse effects. The phytotoxicity resulting from excessive amounts of nanoparticles affects seed germination and biomass production, disrupts the photosynthesis system, induces oxidative stress, impacts cell membrane integrity, alters gene expression, causes DNA damage, and leads to epigenetic variations in plants. Nanoparticles are found to directly associate with the cell membrane and cell organelles, leading to the dissolution and release of toxic ions, generation of reactive oxygen species (ROS) and subsequent oxidative stress. The present study signifies and accumulates knowledge regarding the application of nanoparticles in agriculture and illustrates a clear picture of their possible impacts on plants and soil microbes, thereby paving the way for future developments in nano-agrotechnology. The review concludes by addressing current challenges and proposing future directions to comprehend and mitigate the possible biological risks associated with nanoparticles in agriculture.


Nanoparticles , Plants , Nanoparticles/toxicity , Nanoparticles/chemistry , Plants/drug effects , Plants/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects
7.
Sci Total Environ ; 929: 172652, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38653146

Airway epithelium is extraordinary vulnerable to damage owning to continuous environment exposure. Subsequent repair is therefore essential to restore the homeostasis of respiratory system. Disruptions in respiratory epithelial repair caused by nanoparticles exposure have been linked to various human diseases, yet implications in repair process remain incompletely elucidated. This study aims to elucidate the key stage in epithelial repair disturbed by carbon black (CB) nanoparticles, highlighting the pivotal role of ΔNp63 in mediating the epithelium repair. A competitive-like binding between CB and beta-catenin 1 (CTNNB1) to ΔNp63 is proposed to elaborate the underlying toxicity mechanism. Specifically, CB exhibits a remarkable inhibitory effect on cell proliferation, leading to aberrant airway epithelial repair, as validated in air-liquid culture. ΔNp63 drives efficient epithelial proliferation during CB exposure, and CTNNB1 was identified as a target of ΔNp63 by bioinformatics analysis. Further molecular dynamics simulation reveals that oxygen-containing functional groups on CB disrupt the native interaction of CTNNB1 with ΔNp63 through competitive-like binding pattern. This process modulates CTNNB1 expression, ultimately restraining proliferation during respiratory epithelial repair. Overall, the current study elucidates that the diminished interaction between CTNNB1 and ΔNp63 impedes respiratory epithelial repair in response to CB exposure, thereby enriching the public health risk assessment on CB-related respiratory diseases.


Soot , beta Catenin , Soot/toxicity , beta Catenin/metabolism , Humans , Respiratory Mucosa , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Cell Proliferation , Epithelial Cells , Nanoparticles/toxicity
8.
Sci Total Environ ; 927: 172213, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38580116

In the environment, sunlight or ultraviolet (UV) radiation is considered to be the primary cause of plastic aging, leading to their fragmentation into particles, including micro(nano)plastics (MNPs). Photoaged MNPs possess diverse interactive properties and ecotoxicological implications substantially different from those of pristine plastic particles. This review aims to highlight the mechanisms and implications of UV-induced photoaging of MNPs, with an emphasis on various UV sources and their interactions with co-occurring organic and inorganic chemicals, as well as the associated ecological and health impacts and factors affecting those interactions. Compared to UV-B, UV-A and UV-C were more widely used in laboratory studies for MNP degradation. Photoaged MNPs act as vectors for the transportation of organic pollutants, organic matter, and inorganic chemicals in the environment. Literature showed that photoaged MNPs exhibit a higher sorption capacity for PPCPs, PAHs, PBDEs, pesticides, humic acid, fulvic acid, heavy metals, and metallic nanoparticles than pristine MNPs, potentially causing significant changes in associated ecological and health impacts. Combined exposure to photoaged MNPs and organic and inorganic pollutants significantly altered mortality rate, decreased growth rate, histological alterations, neurological impairments, reproductive toxicity, induced oxidative stress, thyroid disruption, hepatotoxicity, and genotoxicity in vivo, both in aquatic and terrestrial organisms. Limited studies were reported in vitro and found decreased cellular growth and survival, induced oxidative stress, and compromised the permeability and integrity of the cell membrane. In addition, several environmental factors (temperature, organic matter, ionic strength, time, and pH), MNP properties (polymer types, sizes, surface area, shapes, colour, and concentration), and chemical properties (pollutant type, concentration, and physiochemical properties) can influence the photoaging of MNPs and associated impacts. Lastly, the research gaps and prospects of MNP photoaging and associated implications were also summarized. Future research should focus on the photoaging of MNPs under environmentally relevant conditions, exploiting the polydisperse characteristics of environmental plastics, to make this process more realistic for mitigating plastic pollution.


Environmental Pollutants , Environmental Pollutants/toxicity , Ultraviolet Rays , Plastics , Nanoparticles/toxicity
9.
ACS Appl Mater Interfaces ; 16(17): 21522-21533, 2024 May 01.
Article En | MEDLINE | ID: mdl-38647198

Tolcapone is an orally active catechol-O-methyltransferase (COMT) inhibitor used as adjuvant therapy in Parkinson's disease. However, it has a highly hepatotoxic profile, as recognized by the U.S. Food and Drug Administration. As a possible solution, nanoscience brought us several tools in the development of new functional nanomaterials with tunable physicochemical properties, which can be part of a solution to solve several drawbacks, including drug's short half-life and toxicity. This work aims to use PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a stable carrier with lower hydrodynamic size and polydispersity to encapsulate tolcapone in order to overcome its therapeutic drawbacks. Using the nanoprecipitation method, tolcapone-loaded nanoparticles with a DLC% of 5.7% were obtained (EE% of 47.0%) and subjected to a lyophilization optimization process to obtain a final shelf-stable formulation. Six different cryoprotectants in concentrations up to 10% (w/v) were tested. A formulation of PLGA nanoparticles with 3% hydroxypropyl-ß-cyclodextrin (HPßCD) as a cryoprotectant (PLGA-HP@Tolc), presenting sub-200 nm sizes and low polydispersity (PdI < 0.200) was selected. Cytotoxicity assays, namely, MTT and SRB, were used to study the metabolic activity and cell density of tolcapone and PLGA-HP@Tolc-treated cells. In both assays, a hepatocarcinoma cell line (HepG2) growing in glucose or glucose-free media (galactose-supplemented medium) was used. The results demonstrated that the treatment with the PLGA-HP@Tolc formulation led to a decrease in cytotoxicity in comparison to free tolcapone-treated cells in both media tested. Moreover, the elected formulation also counteracted ATP-depletion and excessive ROS production induced by tolcapone. The results suggest that HPßCD might have a dual function in the formulation: cryoprotectant and anticytotoxic agent, protecting cells from tolcapone-induced damage. Using an in vitro COMT inhibition assay, the PLGA-HP@Tolc formulation demonstrated to inhibit COMT as efficiently as free tolcapone. Overall, the results suggest that tolcapone-loaded PLGA NPs could be an interesting alternative to free tolcapone, demonstrating the same in vitro efficacy in inhibiting COMT but with a safer cytotoxic profile.


Nanoparticles , Polyethylene Glycols , Polylactic Acid-Polyglycolic Acid Copolymer , Tolcapone , Nanoparticles/chemistry , Nanoparticles/toxicity , Tolcapone/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Humans , Polyethylene Glycols/chemistry , Hep G2 Cells , Drug Carriers/chemistry , Drug Carriers/toxicity , Catechol O-Methyltransferase Inhibitors/chemistry , Catechol O-Methyltransferase Inhibitors/pharmacology , Particle Size , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Cell Survival/drug effects
10.
Environ Sci Pollut Res Int ; 31(20): 30149-30162, 2024 Apr.
Article En | MEDLINE | ID: mdl-38602634

Nanoparticles, particularly magnesium oxide nanoparticles (MgO-NPs), are increasingly utilized in various fields, yet their potential impact on cellular systems remains a topic of concern. This study aimed to comprehensively investigate the molecular mechanisms underlying MgO-NP-induced cellular impairment in Saccharomyces cerevisiae, with a focus on cell wall integrity, endoplasmic reticulum (ER) stress response, mitochondrial function, lipid metabolism, autophagy, and epigenetic alterations. MgO-NPs were synthesized through a chemical reduction method, characterized for morphology, size distribution, and elemental composition. Concentration-dependent toxicity assays were conducted to evaluate the inhibitory effect on yeast growth, accompanied by propidium iodide (PI) staining to assess membrane damage. Intracellular reactive oxygen species (ROS) accumulation was measured, and chitin synthesis, indicative of cell wall perturbation, was examined along with the expression of chitin synthesis genes. Mitochondrial function was assessed through Psd1 localization, and ER structure was analyzed using dsRed-HDEL marker. The unfolded protein response (UPR) pathway activation was monitored, and lipid droplet formation and autophagy induction were investigated. Results demonstrated a dose-dependent inhibition of yeast growth by MgO-NPs, with concomitant membrane damage and ROS accumulation. Cell wall perturbation was evidenced by increased chitin synthesis and upregulation of chitin synthesis genes. MgO-NPs impaired mitochondrial function, disrupted ER structure, and activated the UPR pathway. Lipid droplet formation and autophagy were induced, indicating cellular stress responses. Additionally, MgO-NPs exhibited differential cytotoxicity on histone mutant strains, implicating specific histone residues in cellular response to nanoparticle stress. Immunoblotting revealed alterations in histone posttranslational modifications, particularly enhanced methylation of H3K4me. This study provides comprehensive insights into the multifaceted effects of MgO-NPs on S. cerevisiae, elucidating key molecular pathways involved in nanoparticle-induced cellular impairment. Understanding these mechanisms is crucial for assessing nanoparticle toxicity and developing strategies for safer nanoparticle applications.


Cell Wall , Endoplasmic Reticulum Stress , Magnesium Oxide , Nanoparticles , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Magnesium Oxide/toxicity , Endoplasmic Reticulum Stress/drug effects , Cell Wall/drug effects , Nanoparticles/toxicity , Reactive Oxygen Species/metabolism , Autophagy/drug effects
11.
Environ Sci Pollut Res Int ; 31(20): 30256-30268, 2024 Apr.
Article En | MEDLINE | ID: mdl-38602639

There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.


Microalgae , Microalgae/drug effects , Chlorophyceae/drug effects , Nanoparticles/toxicity
12.
Ecotoxicol Environ Saf ; 277: 116331, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38640801

Polystyrene nanoparticles are emerging as contaminants in freshwater environments, posing potential risks to amphibians exposed to extended periods of water contamination. Using tadpoles as a model, this study aimed to evaluate the toxicity of PS NPs. Pyrolysis-gas chromatography-tandem mass spectrometry (Py-GCMS) analysis revealed a concentration-dependent increase in polystyrene nanoparticles (PS NPs) levels in tadpoles with escalating exposure concentrations. Following exposure to 100 nm fluorescent microspheres, fluorescence was observed in the intestines and gills, peaking at 48 hours. Histopathological analysis identified degenerative necrosis and inflammation in the liver, along with atrophic necrosis of glomeruli and tubules in the kidneys. These results indicate a discernible impact of PS NPs on antioxidant levels, including reduced superoxide dismutase and catalase activities, elevated glutathione content, and increased malondialdehyde levels. Electron microscopy observations revealed the infiltration of PS NPs into Kupffer's cells and hepatocytes, leading to visible lesions such as nuclear condensation and mitochondrial disruption. The primary objective of this research was to elucidate the adverse effects of prolonged PS NPs exposure on amphibians.


Larva , Liver , Nanoparticles , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Polystyrenes/toxicity , Oxidative Stress/drug effects , Nanoparticles/toxicity , Liver/drug effects , Liver/pathology , Water Pollutants, Chemical/toxicity , Larva/drug effects , Glutathione/metabolism , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Catalase/metabolism
13.
Environ Int ; 186: 108617, 2024 Apr.
Article En | MEDLINE | ID: mdl-38599027

Microplastics (MPs) and nanoplastics (NPs) pollution has emerged as a significant and widespread environmental issue. Humans are inevitably exposed to MPs and NPs via ingestion, inhalation, and dermal contacts from various sources. However, mechanistic knowledge of their distribution, interaction, and potency in the body is still lacking. To address this knowledge gap, we have undertaken the task of elucidating the toxicokinetic (TK) behaviors of MPs and NPs, aiming to provide mechanistic information for constructing a conceptual physiologically based toxicokinetic (PBTK) model to support in silico modeling approaches. Our effort involved a thorough examination of the existing literature and data collation on the presence of MPs in the human body and in vitro/ex vivo/in vivo biodistribution across various cells and tissues. By comprehending the absorption, distribution, metabolism, and excretion mechanisms of MPs and NPs in relation to their physicochemical attributes, we established a foundational understanding of the link between external exposure and internal tissue dosimetry. We observed that particle size and surface chemistry have been thoroughly explored in previous experimental studies. However, certain attributes, such as polymer type, shape, and biofilm/biocorona, warrant attention and further examination. We discussed the fundamental disparities in TK properties of MPs/NPs from those of engineered nanoparticles. We proposed a preliminary PBTK framework with several possible modeling approaches and discussed existing challenges for further investigation. Overall, this article provides a comprehensive compilation of existing TK data of MPs/NPs, a critical overview of TK processes and mechanisms, and proposes potential PBTK modeling approaches, particularly regarding their applicability to the human system, and outlines future perspectives for developing PBTK models and their integration into human health risk assessment of MPs and NPs.


Microplastics , Nanoparticles , Toxicokinetics , Humans , Microplastics/toxicity , Risk Assessment , Nanoparticles/chemistry , Nanoparticles/toxicity , Environmental Exposure , Models, Biological , Tissue Distribution , Particle Size
14.
Part Fibre Toxicol ; 21(1): 20, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38610056

BACKGROUND: The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS: In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION: Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.


Nanoparticles , Polystyrenes , Animals , Mice , Polystyrenes/toxicity , Reactive Oxygen Species , Necroptosis , Plastics , Hepatocytes , Macrophages , Mitochondria , Nanoparticles/toxicity , Liver
15.
J Hazard Mater ; 470: 134263, 2024 May 15.
Article En | MEDLINE | ID: mdl-38613951

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Antimony , Antioxidants , Gene Expression Regulation, Plant , Nanoparticles , Oryza , Selenium , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Oryza/genetics , Antimony/toxicity , Antioxidants/metabolism , Selenium/toxicity , Gene Expression Regulation, Plant/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development
16.
J Hazard Mater ; 470: 134298, 2024 May 15.
Article En | MEDLINE | ID: mdl-38626679

4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 µg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.


Camphor , Camphor/analogs & derivatives , Zebrafish , Animals , Male , Female , Camphor/toxicity , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Polystyrenes/toxicity , Nanoparticles/toxicity , Reproduction/drug effects , Brain/drug effects , Brain/metabolism , Testis/drug effects , Testis/metabolism , Testis/pathology , Benzhydryl Compounds/toxicity , Liver/drug effects , Liver/pathology , Liver/metabolism
17.
Sci Total Environ ; 927: 172380, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38604358

The presence of nanoplastics (NPs) and microplastics (MPs) in the environment is recognised as a global-scale problem. Due to their hydrophobic nature and large specific surface, NPs and MPs can adsorb other contaminants, as polycyclic aromatic hydrocarbons (PAHs), and modulate their bioavailability and hazard. Adult zebrafish were exposed for 3 and 21 days to: (1) 0.07 mg/L NPs (50 nm), (2) 0.05 mg/L MPs (4.5 µm), (3) MPs with sorbed oil compounds of the water accommodated fraction (WAF) of a naphthenic crude oil (MPs-WAF), (4) MPs with sorbed benzo(a)pyrene (MPs-B(a)P), (5) 5 % WAF and (6) 21 µg/L B(a)P. Electrodense particles resembling NPs were seen in the intestine lumen close to microvilli. MPs were abundantly found in the intestine lumen, but not internalised into the tissues. After 21 days, NPs caused a significant downregulation of cat, and upregulation of gpx1a and sod1, while MPs upregulated cyp1a and increased the prevalence of liver vacuolisation. No histopathological alteration was observed in gills. In this study, contaminated MPs did not increase PAH levels in zebrafish but results highlight the potential differential impact of plastic particles depending on their size, making it necessary to urgently address the ecotoxicological impact of real environmental NPs and MPs.


Microplastics , Polycyclic Aromatic Hydrocarbons , Polystyrenes , Water Pollutants, Chemical , Zebrafish , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polystyrenes/toxicity , Nanoparticles/toxicity
18.
J Hazard Mater ; 470: 134148, 2024 May 15.
Article En | MEDLINE | ID: mdl-38565012

There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.


Populus , Populus/drug effects , Populus/metabolism , Populus/growth & development , Populus/genetics , Polystyrenes/toxicity , Plant Leaves/drug effects , Plant Leaves/metabolism , Oxidative Stress/drug effects , Photosynthesis/drug effects , Chlorophyll/metabolism , Metabolomics , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Nanoparticles/toxicity , Multiomics
19.
J Hazard Mater ; 470: 134157, 2024 May 15.
Article En | MEDLINE | ID: mdl-38569337

The wide occurrence of micro- and nanoplastics (MPs/NPs) within aquatic ecosystems has raised increasing concerns regarding their potential effects on aquatic organisms. However, the effects of MPs/NPs on intestinal health and microbiota of fish remain controversial, and there is a lack of comprehensive understanding regarding how the impact of MPs/NPs is influenced by MPs/NPs characteristics and experimental designs. Here, we conducted a global analysis to synthesize the effects of MPs/NPs on 47 variables associated with fish intestinal health and microbiota from 118 studies. We found that MPs/NPs generally exerted obvious adverse effects on intestinal histological structure, permeability, digestive function, immune and oxidative-antioxidative systems. By contrast, MPs/NPs showed slight effects on intestinal microbial variables. Further, we observed that the responses of intestinal variables to MPs/NPs were significantly regulated by MPs/NPs characteristics and experimental designs. For instance, polyvinyl chloride plastics showed higher toxicity to fish gut than polyethylene and polystyrene did. Additionally, larval fish appeared to be more sensitive to MPs/NPs than juvenile fish. Collectively, this study highlights the potential impacts of MPs/NPs on intestinal health and microbiota of fish, and underscores the determinant role of MPs/NPs characteristics and experimental designs in MPs/NPs toxicity.


Fishes , Gastrointestinal Microbiome , Intestines , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Intestines/drug effects , Intestines/microbiology , Gastrointestinal Microbiome/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry
20.
Sci Total Environ ; 927: 172037, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38575003

Despite increasing concerns regarding the harmful effects of plastic-induced gut injury, mechanisms underlying the initiation of plastic-derived intestinal toxicity remain unelucidated. Here, mice were subjected to long-term exposure to polystyrene nanoplastics (PS-NPs) of varying sizes (80, 200, and 1000 nm) at doses relevant to human dietary exposure. PS-NPs exposure did not induce a significant inflammatory response, histopathological damage, or intestinal epithelial dysfunction in mice at a dosage of 0.5 mg/kg/day for 28 days. However, PS-NPs were detected in the mouse intestine, coupled with observed microstructural changes in enterocytes, including mild villous lodging, mitochondrial membrane rupture, and endoplasmic reticulum (ER) dysfunction, suggesting that intestinal-accumulating PS-NPs resulted in the onset of intestinal epithelial injury in mice. Mechanistically, intragastric PS-NPs induced gut microbiota dysbiosis and specific bacteria alterations, accompanied by abnormal metabolic fingerprinting in the plasma. Furthermore, integrated data from mass spectrometry imaging-based spatial metabolomics and metallomics revealed that PS-NPs exposure led to gut dysbiosis-associated host metabolic reprogramming and initiated intestinal injury. These findings provide novel insights into the critical gut microbial-host metabolic remodeling events vital to nanoplastic-derived-initiated intestinal injury.


Gastrointestinal Microbiome , Intestinal Mucosa , Polystyrenes , Animals , Polystyrenes/toxicity , Mice , Intestinal Mucosa/metabolism , Gastrointestinal Microbiome/drug effects , Nanoparticles/toxicity , Dysbiosis/chemically induced , Microplastics/toxicity
...